Oportunidades > Empreender

Sistema faz contagem automática de plantas na lavoura por imagens de drones

Uma rede colaborativa com professores e pesquisadores de instituições públicas e privadas, nacionais e internacionais, desenvolveu uma solução pioneira no País, que detecta e conta plantas ao mesmo tempo que identifica linhas de plantio em imagens obtidas com drones. A tarefa é executada graças a uma combinação de técnicas avançadas de visão computacional e aprendizagem profunda (deep learning), capaz de tomar decisões por conta própria. Isso reduz custos e incertezas, facilita a gestão sustentável da lavoura e alavanca o agro 4.0.

Em experimentos com cultivo de milho e citros nas regiões Centro-Oeste e Sudeste, o método alcançou alto índice de acerto no monitoramento de sistemas agrícolas, além de demonstrar versatilidade e permitir a redução da dependência de inspeções visuais, que são demoradas, trabalhosas e tendenciosas. Outra vantagem em relação aos métodos tradicionais é que a solução proposta permite uma varredura completa do talhão ou da área plantada.

O mapeamento preciso das áreas de cultivo é um pré-requisito importante para auxiliar o gerenciamento do campo e a previsão de produção na chamada agricultura de precisão. Isso porque as culturas são sensíveis aos padrões de plantio e têm uma capacidade limitada para compensar áreas ausentes em uma linha, o que impacta negativamente o rendimento por unidade de área de solo durante a época de colheita.

Identificar as linhas de plantio pode ajudar os produtores a corrigir problemas ocorridos durante o cultivo de mudas, informação essencial na tomada de decisões. Por isso, imagens ópticas com sensores embarcados em veículos aéreos não tripulados (Vants) são um meio de baixo custo comumente usado para capturar cenas, cobrindo áreas cultivadas.

Versatilidade e precisão

O estudo envolveu pesquisadores da Universidade Federal do Mato Grosso do Sul (UFMS), Universidade do Oeste Paulista (Unoeste), Universidade do Estado de Santa Catarina (Udesc), Universidade de Waterloo, no Canadá, e da Embrapa Instrumentação (SP). A proposta do grupo foi desenvolver um método de aprendizado profundo baseado em uma rede neural convolucional (do inglês, Convolutional Neural Network – CNN) para contar e detectar simultaneamente plantas e linhas de plantio com imagens obtidas por sensores embarcados em Vants.

Apoiada pelo Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) e pela Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes), a pesquisa é um dos resultados do projeto sobre tecnologias com potenciais disruptivos para automação e agricultura de precisão, liderado pelo pesquisador da Embrapa Lúcio André de Castro Jorge, especialista em processamento de imagens captadas por diversos tipos de drones.

A pesquisa

O estudo foi conduzido com plantas de milho, em estádio inicial, mas com alta densidade, em área experimental da Fazenda Escola da Universidade Federal de Mato Grosso do Sul, com aproximadamente 7.435 m². A pesquisa cobriu um total de 33.360 pés de milho em 224 fileiras de plantas.

O método alcançou alto desempenho para contagem, errando aproximadamente seis plantas por imagem, cada uma com mais de 100 plantas, e desempenho similar na localização e extração de linhas de plantio. Em citros, o método foi igualmente superior a outras redes neurais previamente desenvolvidas em outros estudos, errando entre uma e duas árvores por imagem.

Em campos de milho, as áreas com falhas podem ser preenchidas por plantas dessa mesma cultura, caso detectadas a tempo de se realizar a intervenção na mesma safra. Essa condição ocorre em diferentes culturas, como cana-de-açúcar, soja, tomate, entre outras, com características semelhantes. De olho nessa lacuna, os pesquisadores focaram em uma solução que pudesse ser replicada em outras culturas, não restrita somente aos campos de milho e citros.

Outra contribuição importante do método é a detecção de culturas plantadas em alta densidade, ou adensadas com espaçamento reduzido. As plantas nas imagens da área experimental foram identificadas por meio de fotointerpretação. O professor da Unioeste Lucas Prado Osco, supervisionado pelo pesquisador José Marcato Junior durante o seu pós-doutorado na UFMS, explica que esses dados foram inseridos na rede neural como exemplo para a aprendizagem.

“Assim, o método aprende por meio desses exemplos. Ocorre que as plantas se encontram muito próximas umas das outras, e isso pode ser um fator problemático para métodos convencionais de deep learning. Esse método utiliza uma abordagem cuja a probabilidade de cada pixel ser uma planta é real e, a partir de um refinamento inteligente, consegue definir o pixel central e detectar a posição da planta na imagem”, detalha Osco, que é bolsista na Embrapa Instrumentação no projeto sobre tecnologias disruptivas.

Segundo o Castro Jorge, nenhum dos estudos implementou uma detecção de linha de plantio em seus métodos com rede neural convolucional, outro diferencial da abordagem atual. “Embora muitas redes profundas de detecção de objetos possam ser usadas para detectar plantas e linhas de plantio, elas exigem várias etapas de processamento de imagem com técnicas convencionais extremamente custosas e modificações para executar ambas as tarefas em conjunto”, compara o pesquisador.

A abordagem proposta usa uma arquitetura de duas ramificações, um modelo que permite a troca de informações entre os ramos da rede. “Dessa maneira, a detecção de linhas pela rede é beneficiada com aprendizagem da detecção de plantas, e vice-versa, uma vez que ela entende que não haverá plantas fora das linhas, e uma linha não poderá ser formada sem que existam plantas. Isso também contribui para reduzir a detecção de plantas daninhas, embora estudos futuros ainda sejam necessários para avaliar essa condição com maior clareza”, relata Castro Jorge.

Baixo custo como diferencial

Uma versão preliminar do método foi aplicada pela primeira vez para contar árvores cítricas, e obteve uma precisão de aproximadamente 97% de acertos. Tanto em citros quanto em milho, o grupo usou imagens de um campo cultivado, captadas por câmera com sensores RGB embarcada em drones para compor o conjunto de dados. O sistema RGB – um sistema de cores aditivas em que o vermelho, o verde e o azul são combinados – por ser uma solução de baixo custo, é instalado na maioria dos drones, é facilmente replicável e possui alta disponibilidade no mercado.

“Essa tendência de utilizar os sensores RGB permitu resultados importantes com custos reduzidos quando comparados ao uso de sensores especiais em outras faixas do espectro de luz. Assim, o método é uma alternativa de baixo custo e viável para ser aplicada em qualquer cultivo. Mas um grande diferencial ainda está na possibilidade de embarcar diretamente no Vant um sistema inteligente que permite detectar em tempo real a partir das redes treinadas”, avalia Castro Jorge.

Um dos principais desafios envolveu a detectação de plantas nas bordas das imagens, quando a maior parte delas se encontra obstruída. “A complicação se dá em função de regiões com alta oclusão, onde uma planta se sobrepõe a outra. Além disso, outra dificuldade, nesse caso com a detecção de linhas, está relacionada ao espaçamento entre plantas. Existem linhas em que, por perdas durante o plantio, a distância entre uma planta e outra é grande. Isso dificulta a aprendizagem da rede, pois ela pode não compreender que uma planta muito distante das outras possa ainda pertencer à mesma linha”, conta o cientista. “Não obstante, mesmo nesses poucos casos, observamos que o método publicado é capaz de predizer corretamente a posição da maioria das plantas e das linhas”, afirma Lucas Osco.

Fonte: https://www.embrapa.br/busca-de-noticias/-/noticia/60750788/sistema-faz-contagem-automatica-de-plantas-na-lavoura-por-imagens-de-drones?lling=agencia